Get Map Unit Key (mukey
) grid from SoilWeb Web Coverage Service (WCS)
Source: R/mukey-WCS.R
mukey.wcs.Rd
Download chunks of the gNATSGO, gSSURGO, RSS, and STATSGO2 map unit key grid via bounding-box from the SoilWeb WCS.
Usage
mukey.wcs(
aoi,
db = c("gNATSGO", "gSSURGO", "RSS", "STATSGO", "PR_SSURGO", "HI_SSURGO"),
res = 30,
quiet = FALSE
)
Arguments
- aoi
area of interest (AOI) defined using either a
Spatial*
,RasterLayer
,sf
,sfc
orbbox
object, or alist
, see details- db
name of the gridded map unit key grid to access, should be either 'gNATSGO', 'gSSURGO', 'STATSGO', 'HI_SSURGO', or 'PR_SSURGO' (case insensitive)
- res
grid resolution, units of meters. The native resolution of gNATSGO and gSSURGO (this WCS) is 30m; STATSGO (this WCS) is 300m; and Raster Soil Surveys (RSS) are at 10m resolution. If
res
is not specified the native resolution of the source is used.- quiet
logical, passed to
curl::curl_download
to enable / suppress URL and progress bar for download.
Value
A SpatRaster (or RasterLayer) object containing indexed map unit keys and associated raster attribute table or a try-error if request fails. By default, spatial classes from the terra
package are returned. If the input object class is from the raster
or sp
packages a RasterLayer is returned.
Details
aoi
should be specified as one of: SpatRaster
, Spatial*
, RasterLayer
, sf
, sfc
, bbox
object, OR a list
containing:
aoi
bounding-box specified as (xmin, ymin, xmax, ymax) e.g. c(-114.16, 47.65, -114.08, 47.68)
crs
coordinate reference system of BBOX, e.g. 'OGC:CRS84' (EPSG:4326, WGS84 Longitude/Latitude)
The WCS query is parameterized using a rectangular extent derived from the above AOI specification, after conversion to the native CRS (EPSG:5070) of the WCS grids.
Databases available from this WCS can be queried using WCS_details(wcs = 'mukey')
.
Examples
if (FALSE) { # \dontrun{
library(terra)
res <- mukey.wcs(list(aoi = c(-116.7400, 35.2904, -116.7072, 35.3026), crs = "EPSG:4326"),
db = 'gNATSGO', res = 30)
m <- unique(values(res))
prp <- setNames(
get_SDA_property(
c("ph1to1h2o_r", "claytotal_r"),
"weighted average",
mukeys = m,
top_depth = 0,
bottom_depth = 25,
include_minors = TRUE,
miscellaneous_areas = FALSE
)[, c("mukey", "ph1to1h2o_r", "claytotal_r")],
c("ID", "pH1to1_0to25", "clay_0to25")
)
levels(res) <- prp
res2 <- catalyze(res)
res2
plot(res2[['pH1to1_0to25']])
} # }