Summarize soil color data, weighted by occurrence and horizon thickness.

aggregateColor(
  x,
  groups = "genhz",
  col = "soil_color",
  colorSpace = "CIE2000",
  k = NULL,
  profile_wt = NULL,
  mixingMethod = c("estimate", "exact")
)

Arguments

x

a SoilProfileCollection object

groups

the name of a horizon or site attribute used to group horizons, see examples

col

the name of a horizon-level attribute with soil color specified in hexadecimal (i.e. "#rrggbb")

colorSpace

(now deprecated, removed in aqp 2.1) 'CIE2000' used for all cases

k

single integer specifying the number of colors discretized via PAM (cluster::pam()), see details

profile_wt

the name of a site-level attribute used to modify weighting, e.g. area

mixingMethod

method used to estimate "aggregate" soil colors, see mixMunsell()

Value

A list with the following components:

scaled.data

a list of colors and associated weights, one item for each generalized horizon label with at least one color specified in the source data

aggregate.data

a data.frame of weighted-mean colors, one row for each generalized horizon label with at least one color specified in the source data

Details

Weights are computed by: w_i = sqrt(sum(thickness_i)) * n_i where w_i is the weight associated with color i, thickness_i is the total thickness of all horizons associated with the color i, and n_i is the number of horizons associated with color i. Weights are computed within groups specified by groups.

See also

Author

D.E. Beaudette

Examples


# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# load some example data
data(sp1, package='aqp')

# upgrade to SoilProfileCollection and convert Munsell colors
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

# generalize horizon names
n <- c('O', 'A', 'B', 'C')
p <- c('O', 'A', 'B', 'C')
sp1$genhz <- generalize.hz(sp1$name, n, p)

# aggregate colors over horizon-level attribute: 'genhz'
a <- aggregateColor(sp1, groups = 'genhz', col = 'soil_color')

# check results
str(a)
#> List of 2
#>  $ scaled.data   :List of 4
#>   ..$ O:'data.frame':	3 obs. of  5 variables:
#>   .. ..$ soil_color: chr [1:3] "#3C2C22FF" "#3A2D20FF" "#564436FF"
#>   .. ..$ weight    : num [1:3] 0.678 0.177 0.145
#>   .. ..$ n.hz      : int [1:3] 2 1 1
#>   .. ..$ munsell   : chr [1:3] "7.5YR 2/2" "10YR 2/2" "7.5YR 3/2"
#>   .. ..$ .id       : Factor w/ 4 levels "O","A","B","C": 1 1 1
#>   ..$ A:'data.frame':	9 obs. of  5 variables:
#>   .. ..$ soil_color: chr [1:9] "#3A2D20FF" "#564436FF" "#745C41FF" "#3C2C22FF" ...
#>   .. ..$ weight    : num [1:9] 0.3515 0.2342 0.1067 0.0754 0.0621 ...
#>   .. ..$ n.hz      : int [1:9] 4 3 1 2 1 1 1 1 1
#>   .. ..$ munsell   : chr [1:9] "10YR 2/2" "7.5YR 3/2" "10YR 4/3" "7.5YR 2/2" ...
#>   .. ..$ .id       : Factor w/ 4 levels "O","A","B","C": 2 2 2 2 2 2 2 2 2
#>   ..$ B:'data.frame':	14 obs. of  5 variables:
#>   .. ..$ soil_color: chr [1:14] "#564436FF" "#745C41FF" "#544535FF" "#58432CFF" ...
#>   .. ..$ weight    : num [1:14] 0.2842 0.2033 0.1265 0.0821 0.0552 ...
#>   .. ..$ n.hz      : int [1:14] 5 3 3 2 2 2 2 1 1 1 ...
#>   .. ..$ munsell   : chr [1:14] "7.5YR 3/2" "10YR 4/3" "10YR 3/2" "10YR 3/3" ...
#>   .. ..$ .id       : Factor w/ 4 levels "O","A","B","C": 3 3 3 3 3 3 3 3 3 3 ...
#>   ..$ C:'data.frame':	9 obs. of  5 variables:
#>   .. ..$ soil_color: chr [1:9] "#564436FF" "#725C50FF" "#8E775AFF" "#795B36FF" ...
#>   .. ..$ weight    : num [1:9] 0.279 0.152 0.131 0.131 0.089 ...
#>   .. ..$ n.hz      : int [1:9] 3 2 2 2 1 1 1 1 1
#>   .. ..$ munsell   : chr [1:9] "7.5YR 3/2" "5YR 4/2" "10YR 5/3" "10YR 4/4" ...
#>   .. ..$ .id       : Factor w/ 4 levels "O","A","B","C": 4 4 4 4 4 4 4 4 4
#>  $ aggregate.data:'data.frame':	4 obs. of  9 variables:
#>   ..$ genhz   : Factor w/ 4 levels "O","A","B","C": 1 2 3 4
#>   ..$ hue     : chr [1:4] "7.5YR" "7.5YR" "7.5YR" "7.5YR"
#>   ..$ value   : num [1:4] 2 3 3 4
#>   ..$ chroma  : num [1:4] 2 2 3 3
#>   ..$ munsell : chr [1:4] "7.5YR 2/2" "7.5YR 3/2" "7.5YR 3/3" "7.5YR 4/3"
#>   ..$ distance: num [1:4] 1.16 2.19 2.75 2.85
#>   ..$ col     : chr [1:4] "#3C2C22FF" "#564436FF" "#5B422EFF" "#775B44FF"
#>   ..$ n       : int [1:4] 3 9 14 9
#>   ..$ H       : num [1:4] 1.23 2.66 3.14 2.91

if (FALSE) { # \dontrun{
# aggregate colors over site-level attribute: 'group'
a <- aggregateColor(sp1, groups = 'group', col = 'soil_color')

# aggregate colors over site-level attribute: 'group'
# discretize colors to 4 per group
a <- aggregateColor(sp1, groups = 'group', col = 'soil_color', k = 4)

# aggregate colors over depth-slices
s <- dice(sp1, c(5, 10, 15, 25, 50, 100, 150) ~ soil_color)
s$slice <- paste0(s$top, ' cm')
s$slice <- factor(s$slice, levels=guessGenHzLevels(s, 'slice')$levels)
a <- aggregateColor(s, groups = 'slice', col = 'soil_color')

  # optionally plot with helper function
  if(require(sharpshootR))
    aggregateColorPlot(a)

# a more interesting example
  data(loafercreek, package = 'soilDB')
  
  # generalize horizon names using REGEX rules
  n <- c('Oi', 'A', 'BA','Bt1','Bt2','Bt3','Cr','R')
  p <- c('O', '^A$|Ad|Ap|AB','BA$|Bw', 
         'Bt1$|^B$','^Bt$|^Bt2$','^Bt3|^Bt4|CBt$|BCt$|2Bt|2CB$|^C$','Cr','R')
  loafercreek$genhz <- generalize.hz(loafercreek$hzname, n, p)
  
  # remove non-matching generalized horizon names
  loafercreek$genhz[loafercreek$genhz == 'not-used'] <- NA
  loafercreek$genhz <- factor(loafercreek$genhz)
  
  a <- aggregateColor(loafercreek, 'genhz')
  
  # plot results with helper function
  par(mar=c(1,4,4,1))
  aggregateColorPlot(a, print.n.hz = TRUE)
  
  # inspect aggregate data
  a$aggregate.data
} # }