Average Hydraulic Parameters from the ROSETTA Model by USDA Soil Texture Class
Source:R/data-documentation.R
ROSETTA.centroids.Rd
Average soil hydraulic parameters generated by the first stage predictions of the ROSETTA model by USDA soil texture class. These data were extracted from ROSETTA documentation and re-formatted for ease of use.
Usage
data(ROSETTA.centroids)
Format
A data frame:
- texture
soil texture class, ordered from low to high available water holding capacity
- theta_r
average saturated water content
- theta_s
average residual water content
- alpha
average value, related to the inverse of the air entry suction, log10-transformed values with units of cm
- npar
average value, index of pore size distribution, log10-transformed values with units of 1/cm
- theta_r_sd
1 standard deviation of
theta_r
- theta_s_sd
1 standard deviation of
theta_s
- alpha_sd
1 standard deviation of
alpha
- npar_sd
1 standard deviation of
npar
- sat
approximate volumetric water content at which soil material is saturated
- fc
approximate volumetric water content at which matrix potential = -33kPa
- pwp
approximate volumetric water content at which matrix potential = -1500kPa
- awc
approximate available water holding capacity: VWC(-33kPa)
VWC(-1500kPa)
Details
Theoretical water-retention parameters for uniform soil material of each texture class have been estimated via van Genuchten model.
References
van Genuchten, M.Th. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils". Soil Science Society of America Journal. 44 (5): 892-898.
Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 2001. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251(3–4): 163-176.
Examples
if (FALSE) { # \dontrun{
library(aqp)
library(soilDB)
library(latticeExtra)
data("ROSETTA.centroids")
# iterate over horizons and generate VG model curve
res <- lapply(1:nrow(ROSETTA.centroids), function(i) {
m <- KSSL_VG_model(VG_params = ROSETTA.centroids[i, ], phi_min = 10^-3, phi_max=10^6)$VG_curve
# copy generalized hz label
m$hz <- ROSETTA.centroids$hz[i]
# copy ID
m$texture_class <- ROSETTA.centroids$texture[i]
return(m)
})
# copy over lab sample number as ID
res <- do.call('rbind', res)
# check: OK
str(res)
# visual check: OK
xyplot(
phi ~ theta | texture_class, data=res,
type=c('l', 'g'),
scales=list(alternating=3, x=list(tick.number=10), y=list(log=10, tick.number=10)),
yscale.components=yscale.components.logpower,
ylab=expression(Suction~~(kPa)),
xlab=expression(Volumetric~Water~Content~~(cm^3/cm^3)),
par.settings = list(superpose.line=list(col='RoyalBlue', lwd=2)),
strip=strip.custom(bg=grey(0.85)),
as.table=TRUE
)
} # }