USDA-NRCS Soil Survey Data

D.E. Beaudette
Soil Scientist
USDA-NRCS









This document is based on:
aqp (1.15.1), soilDB (1.8.14), and sharpshootR (1.3.2).

Acknowledgements

  • P. Roudier, Landcare Research, NZ (aqp)
  • J.M. Skovlin, USDA-NRCS (aqp, soilDB, sharpshootR)
  • S.M. Roecker, USDA-NRCS (aqp, soilDB, sharpshootR)

alt text

100+ years of hard-earned soil survey methods, soil-landscape models, and data

Data Sources and Discussion (see PDF)

alt text

Soils Require Specialized Data Structures

alt text

  • soil data are complex, inherently visual
  • reproducibility is increasingly important
  • focus on the interesting questions, not boilerplate
  • a common vocabulary for soil data analysis would be nice

Slicing OSD Data = Map of Soil Color [25 cm]

alt text

Summarize Clay vs Depth by Geology

pedons <- fetchNASIS()
# ... details on generalization of geologic classes ommitted ...
# aggregate by major geologic type, default slab.fun = hdquantile
a <- slab(pedons, generalized_bedrock ~ clay)

# plot with lattice graphics
xyplot(top ~ p.q50 | generalized_bedrock, upper=a$p.q75, lower=a$p.q25, data=a, ylim=c(180,-5), ylab='Depth (cm)', xlab='Clay Content (%)', strip=strip.custom(bg=grey(0.85)), as.table=TRUE, panel=panel.depth_function, prepanel=prepanel.depth_function, scales=list(y=list(tick.number=7, alternating=3), x=list(alternating=1)), subset=variable == 'clay', layout=c(6,1), cf=a$contributing_fraction, sync.colors=TRUE, alpha=0.25)

alt text

Concluding remarks

  • simple conversion from common data sources to SoilProfileCollection
  • SoilProfileCollection objects are powerful
  • innovative constructs: slice(), slab(), SPC[i,j]
  • pair-wise dissimilarity: profile_compare()
  • visual comparisons and non-parametric summaries


Thank You!


http://ncss-tech.github.io/AQP/