1 Introduction

Most of these series from this analysis, are poorly drained alluvial soils. What we are trying to determine is what the particle size is by watershed. The pattern we see form this edge analysis and our field data is the alluvial soils in our northern watersheds (MLRA104) are more fine loamy with a mix of fine silty poorly drained ponded soils on the flood plain and low stream terraces. As we look at the Alluvial soils in 108, they become more fine silty and fine poorly drained alluvial soils. The most common edge soils such as Nodaway, Lawson, Vesser, Spillville are the better drained frequently flooded aluvial soils that should be next to these Aquol depressions.

2 Data Preparation

# load packages
library(plyr)
library(ggplot2)


# import data
aquolls <- read.csv("C:/Users/stephen/ownCloud/projects/Aquolls_edges.csv")


# modify column headers
names(aquolls) <- tolower(names(aquolls))
names(aquolls)[names(aquolls) %in% c("shape_length_meters", "boundry_miles")] <- c("meters", "miles")


# extract serie names from muname
aquolls$series <- sapply(aquolls$muname, function(x) 
    strsplit(as.character(x), " ")[[1]][1]
    )


# extract the dominant component from the muname
aquolls$series <- sapply(aquolls$series, function(x) 
  strsplit(as.character(x), "-")[[1]][1]
  )


# remove water
aquolls <- subset(aquolls, ! series %in% c("Water", "Alluvial"))

3 Group by Series

aquolls_s <- ddply(aquolls, .(series), summarize, meters = sum(meters))
aquolls_s <- arrange(aquolls_s, desc(meters), series)
aquolls_s_sub <- aquolls_s[1:10, ]

print(aquolls_s_sub)
##        series    meters
## 1        Colo 188990.50
## 2      Ambraw 188656.56
## 3  Spillville 159696.89
## 4       Perks 154154.63
## 5      Coland 125341.33
## 6     Nodaway 102076.80
## 7     Chelsea  98117.96
## 8      Sparta  95273.57
## 9     Marshan  84306.74
## 10       Zook  81273.99
ggplot(aquolls_s_sub, aes(x = meters, y = reorder(series, meters))) + 
  geom_point() +
  ggtitle("Series for the Project")

4 Group by Series and Subbasin

aquolls_sb <- ddply(aquolls, .(subbasin, series), summarize, meters = sum(meters))
aquolls_sb <- arrange(aquolls_sb, subbasin, desc(meters), series)

# Top 1 Series by Subbasin
aquolls_sb_top1 <- ddply(aquolls_sb, .(subbasin), function(x) x[1, ])
aquolls_sb_top1 <- arrange(aquolls_sb_top1, series, subbasin, desc(meters))
aquolls_sb_top1 <- with(aquolls_sb_top1, data.frame(series, subbasin, meters))

print(aquolls_sb_top1)
##        series           subbasin      meters
## 1      Ambraw         Lower Iowa  25593.4680
## 2      Ambraw Lower Wapsipinicon  58445.6653
## 3       Bixby             Cannon   6928.6310
## 4   Chaseburg         Apple-Plum    894.7418
## 5       Clyde               Root    768.4564
## 6      Coland      Copperas-Duck  32300.5854
## 7      Coland        Upper Cedar   8496.4160
## 8      Coland    West Fork Cedar   9684.5873
## 9        Colo        Middle Iowa  43168.4659
## 10       Colo         Upper Iowa   8069.3346
## 11     Hawick         Shell Rock  35338.6098
## 12     Lawson     Upper Chariton  19172.2362
## 13     Lester           Le Sueur   4761.3632
## 14    Marshan Upper Wapsipinicon  18230.0188
## 15    Nodaway      Lake Red Rock   5836.4780
## 16    Nodaway   Lower Des Moines  13796.9662
## 17    Nodaway        North Skunk  11553.1011
## 18    Nodaway              Skunk  31037.4880
## 19    Nodaway        South Skunk   8875.7434
## 20      Perks        Lower Cedar 140251.4787
## 21    Readlyn             Zumbro   1166.3206
## 22 Spillville       Middle Cedar  88593.6139
## 23 Spillville  Middle Des Moines  11807.4349
## 24 Spillville             Turkey   4270.3396
## 25      Titus    Flint-Henderson  19376.5540
## 26 Udorthents         Blue Earth    595.4621
## 27     Vesser          Maquoketa   3436.7064
## 28    Webster          Winnebago  15631.9355
# Top 5 Series by Subbasin
aquolls_sb_top5 <- ddply(aquolls_sb, .(subbasin), function(x) x[1:5, ])

aquolls_sb_top5$subbasin <- factor(aquolls_sb_top5$subbasin, levels = aquolls_sb_top1$subbasin)
sub <- with(aquolls_sb_top1, data.frame(subbasin, "top_series" = series))
aquolls_sb_top5 <- join(aquolls_sb_top5, sub, by = "subbasin")

ggplot(aquolls_sb_top5, aes(x = meters, y = series)) + 
  geom_point() + 
  facet_wrap(~ paste0(top_series, "-", subbasin), scales = "free", ncol = 4) +
  ggtitle("Top 5 Series by Top 1 Series and Subbasin")